If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-21x-20=0
a = 10; b = -21; c = -20;
Δ = b2-4ac
Δ = -212-4·10·(-20)
Δ = 1241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{1241}}{2*10}=\frac{21-\sqrt{1241}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{1241}}{2*10}=\frac{21+\sqrt{1241}}{20} $
| -0.74x+0.44x=8.7 | | 6x=73^2-67^2 | | 2,78^x=5x | | 4(x−7)=5x+23. | | 4(x−7)=5x+23 | | -0.63x+0.43x=5.6 | | 6×n=1 | | 8x+12=0.2(10x-40) | | Y’=600y | | 3.1^x+7=24.8 | | (x-5)²=144 | | 90/x-90/(x+5)=1/5 | | 9x-1=7x-15 | | 4x-20+3x+13=60 | | 4x^2-3x+162=0 | | (x-2)=3(x-5) | | -0.46x+0.26x=5.8 | | 1.56x=1 | | 5(3a-3)=12+3(3a | | 5c+25=70 | | n=13=4 | | 12x2(6+7(x+1))=0 | | 5x-10+3x+4+7x-6=180 | | 9x(x+8)=90 | | 90+(x+4)+(8x-4)=180 | | 4^2n=42^-3n | | 4^2n=42-3n | | 3x+1/4=26 | | 9-2w=25 | | 10/6=15/6x | | 216^-3v=36^3v | | 1-6v=-23 |